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The following is a report of an exploration of what mathematical reasoning might look like 
in classrooms. Focusing on just one lesson in one classroom, data are presented that indicate 
that upper primary students are willing and able to reason for themselves, especially in 
classrooms in which the culture for such reasoning has been established. It seems that the 
opportunities to reason are a product of the tasks that are posed, the structuring of the 
classroom, and the willingness of the teachers to allow students to engage with the tasks for 
themselves.  

Among the positive contributions to mathematics teaching and learning from the 
implementation of the Australian Curriculum: Mathematics (AC:M) is the emphasis given 
to reasoning not only as a process which exemplifies mathematical thinking but also as a 
strategy for learning the mathematics in the first place. The following report explores ways 
of incorporating both emphases into everyday mathematics teaching. 

There are some assumptions underpinning our approach to incorporating reasoning into 
everyday mathematics teaching. First, we argue that students are not reasoning if they are 
merely repeating an argument developed by someone else – the reasoning needs to be their 
own. Students are more likely to reason if they have developed a strategy, connection or 
justification for themselves than if they are performing a procedure they have been taught. 
A second assumption is that such thinking for themselves takes time and that it happens 
only when students are working on tasks that they do not know how to solve. 

The report draws on one aspect of a larger projecti that recommended that teachers 
present students with challenging tasks. The project examined what happened when 
teachers posed challenging tasks to students and reported on ways in which teachers 
encouraged students to persist. In this report, the focus is on the connections between the 
posing of challenging tasks and the opportunities for students to reason mathematically. 

Theoretical Perspective 
While the focus of the data reported below is on student reasoning, our approach relies 

on teachers posing challenging tasks with which students engage with only limited teacher 
guidance. It is out of such engagement that the reasoning emerges. These two aspects of 
our theoretical perspective are elaborated in the following. 

Challenge 

The focus on challenge is partly based on a perspective of the nature of mathematics. 
Mathematics is seen as a network of interconnected ideas. To build these networks of ideas 
it is necessary for students to process different concepts simultaneously, to compare and 
contrast concepts and to consider their application in different contexts. Connected to this 
is a perspective on how mathematics is learned. We consider that mathematics learning 
takes concentration and effort over an extended period of time to build the connections 
between topics, to understand the coherence of mathematical ideas, and to be able to 
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transfer learning to practical contexts and new topics. This perspective is informed by 
Vygotsky’s (1978) notion of the Zone of Proximal Development, Middleton’s (1995) 
descriptions of how motivation is connected to students’ learning, the elements of effective 
teaching described by Anthony and Walshaw (2009) and Sullivan (2011), and the 
descriptions of inquiry based classroom teaching by Marshall and Horton (2011). 

The perspective is also based on the hierarchy of classroom of classroom experiences 
that Smith and Stein (2011) described as moving from “Memorization” to “Procedures 
without connections” to “Procedures with connections” to “Doing Mathematics” tasks. We 
argue that the building of the networks of ideas for themselves can best be done by 
engaging in experiences which can be described as “Doing mathematics” to which we 
would add “for themselves”.  

We take it as given that most students cannot build these networks of ideas, or “do 
mathematics”, without sustained thinking. When confronted by a task that requires them to 
make decisions on the solution type and solution strategy, the expectation is that the 
students do not appeal to the teacher for direction but seek to solve the task for themselves 
especially when the solution is not clear. This requires a willingness to persist. 

The theoretical perspective that informs our approach to this willingness to persist is 
based on the notion of mindsets (Dweck, 2000). Dweck categorised students’ orientation to 
learning in terms of whether they hold either mastery goals or performance goals. Students 
with mastery goals seek to understand the content, and evaluate their success by whether 
they feel they can use and transfer their knowledge. They tend to have a resilient response 
to failure, they remain focused on mastering skills and knowledge even when challenged, 
they do not see failure as an indictment on themselves, and they believe that effort leads to 
success. Students with performance goals are interested predominantly in whether they can 
perform assigned tasks correctly, as defined by the endorsement of the teacher. Such 
students seek success but mainly on tasks with which they are familiar. They avoid or give 
up quickly on challenging tasks, they derive their perception of ability from their capacity 
to attract recognition, and they feel threats to self-worth when effort does not lead to 
recognition. To take up challenges, and therefore to engage with mathematical reasoning, it 
is beneficial if students have a growth mindset and adopt mastery goals. 

The development of growth mindsets and mastery goals takes time and is a product of 
the classroom culture. In an important meta-analysis of 49 research studies on classroom 
culture between 1991 and 2011, Rollard (2012) described three significant and relevant 
findings. First, the meta-analysis found that the middle years of schooling (years 5 to 9) are 
critical for connecting classroom goal structures and the formation of student attitudes, 
including an orientation to persist. Second, Rollard (2012) found that classrooms that 
promote mastery, specifically those that focus on the learning of the content rather than 
competitive performance, are more likely to foster positive student attitudes to learning. 
Third, Rollard concluded from the meta analysis that classrooms in which teachers actively 
support the learning of the students promote high achievement and effort. We interpret this 
to refer to ways that teachers support students in engaging with the challenge of the task, 
and in maintaining this challenge as distinct from minimising it.  

As an example of establishing this classroom culture, the project suggests to teachers 
that they use the metaphor of a “zone of confusion” which they invite students to enter for 
a time, in a sense giving students permission to not know how to proceed with a task. 

In other words, creating classrooms that promote a willingness to persist and posing 
tasks with which students can engage lays the foundation for them to build their own 
networks of mathematical ideas and creates the opportunities for students to reason. 
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Reasoning 

The second perspective informing the research is identifying ways that engaging in 
mathematical reasoning can inform learning and doing mathematics. The AC:M 
(Australian Curriculum and Assessment and Reporting Authority (ACARA, 2011) 
describes reasoning in the following way: 

Students develop an increasingly sophisticated capacity for logical thought and actions, such as 
analysing, proving, evaluating, explaining, inferring, justifying and generalising.  

and 
Students are reasoning mathematically when they explain their thinking, when they deduce and 
justify strategies used and conclusions reached, when they adapt the known to the unknown, when 
they transfer learning from one context to another, when they prove that something is true or false 
and when they compare and contrast related ideas and explain their choices.  

This focus was derived from the earlier report by Kilpatrick Swafford, and Findell 
(2001) which described adaptive reasoning as one of five key aspects of mathematics. In 
interpreting that statement, Watson and Sullivan (2008) described adaptive reasoning as the 
capacity for logical thought, reflection, explanation and justification.  

This inclusion of reasoning in the AC:M is part of a trend internationally. For example, 
the NCTM Standards for School Mathematics (2000) includes the following statement: 

Instructional programs from prekindergarten through grade 12 should enable all students to:  
recognize reasoning and proof as fundamental aspects of mathematics; make and investigate 
mathematical conjectures; develop and evaluate mathematical arguments and proofs; select and use 
various types of reasoning and methods of proof. 

Stacey (2010) argued that reasoning was underemphasised in Australian jurisdictional 
curriculums. In reporting an analysis of Australian mathematics texts, Stacey reported that 
some mathematics texts paid some attention to proof and reasoning, but in a way which 
seemed “… to be to derive a rule in preparation for using it in the exercises, rather than to 
give explanations that might be used as a thinking tool in subsequent problems” (p. 20). 

The real challenge though is finding ways for students to engage in mathematical 
reasoning for themselves. Helpful advice was offered by Fraivillig (2004) who suggested 
that teachers should encourage students to solve problems in more than one way, allow 
students to develop their own approaches, encourage collaboration between students, and 
use students’ explanations as the prompt to explaining the mathematical intent of the task 
and lesson. Interestingly this advice also serves to exemplify what reasoning might look 
like in a mathematics classroom.  

In elaborating on such advice, Clarke (2013) described three particular and discrete 
actions for teachers to: 

 elicit student mathematical reasoning through both the choice of task and the 
pedagogies that surround the task;  

 encourage reasoning by prompting students to reason, which is done by actions 
such as celebrating reasoning when it happens, and by probing students to better 
justifications if they are close; and  

 model mathematical reasoning and guide students in its use.   
The research reported below is exploring what mathematical reasoning might look like 

and ways that it can be fostered in everyday mathematics classrooms. 
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The Research Context 
The overall project involved proposing challenging tasks to teachers to match content 

they were intending to teach, it offered suggestions about ways of encouraging students to 
persist and it gathered data from teachers and students on their experience. While the 
project worked with around 35 primary teachers and 20 secondary teachers, each of whom 
taught and evaluated around 10 lessons, the following is a report of just one lesson in one 
school on the topic of multiplication. The intent is to provide a finer “grain” of detail, and 
therefore different insights, than is possible in reports in which data are synthesised across 
a number of schools and teachers. 

The collaboration between the authors is an example of design research which 
“attempts to support arguments constructed around the results of active innovation and 
intervention in classrooms” (Kelly, 2003, p. 3). The intervention is that the lesson outline 
was suggested by the first author that was implemented by the second author. The 
innovation refers to both the structure of the lesson and the strategies used to engage 
students in the task for themselves. 

The following is the lesson outline that was proposed to all project teachers as used as 
the basis of the lesson described below. The Learning task was as follows:  

I did a multiplication question correctly for homework, but my printer ran out of ink. I remember it 
looked like 

    2 __  ×  3 __  =  __  __  0 

What might be the digits that did not print? (give as many answers as you can) 

The lesson documentation also included a second or Consolidating task (see Dooley, 
2012, for a rationale for this element) was: 

I did a multiplication question correctly for homework, but my printer ran out of ink. I remember it 
looked like 

1 __ × 4 __ = __ __ 2 
What might be the digits that that did not print? (give as many answers as you can) 

The lesson documentation also proposed a rationale for the lesson, a suggested learning 
intention (Hattie, 2009), enabling and extending prompts (Sullivan, Mousley, & 
Zevenbergen, 2009), and suggested student solutions. 

We consider this task to be challenging, or what Smith and Stein (2011) describe as 
Doing Mathematics. This is because it allows students opportunities to determine their own 
approach, to identify and describe patterns and to justify their reasoning about those 
patterns. The task also has the advantage that it is at the level of the curriculum for these 
students and there are a number of, but not too many, possible answers. Another advantage 
is that it is an unusual task for the students in the sense that it was unlikely to have been 
previously presented in such a way. Students can determine their own methods of solution, 
record those solutions in their own ways and can communicate their solutions to others. 

In advance, we identified three possible approaches to reasoning that we hoped to see 
on the first task.  

Identifying and using patterns (for example, if 20 × 30 = 600 then we can work out 21 × 30 = 630 
without doing another multiplication); 

Systematically exhausting possibilities (such as a 0 in the units digit  × anything will produce a 0 in 
the units place, as will 2 × 5, 4 × 5 etc.) 

Making a generalization (considering the task as [20 + x][30 + y], the units digit is 0 if x = 0 or y = 0 
or xy is a multiple of 10). 
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We had hypothesized that if any of these were generated by the students, this would be 
evidence of mathematical reasoning. Our research questions were: 

Does a task such as this one, if supported by the recommended pedagogies, provide students with 
opportunities to do mathematics and to reason mathematically? 

Do students learn the underlying mathematics from the experience of engaging with or observing 
mathematical reasoning? 

Results 
The following report is of a single lesson taught by one teacher in a larger project. The 

intention is to provide insights into the relationship between the type of task, the type of 
pedagogies, and the responses of the students. The lesson was taught by the second author 
and observed by the first author.  There are three sets of data presented: a videotape record 
of the lesson that is represented here in an interpretive summary; selected aspects of the 
written reactions of the teacher to the lesson; and data from the students. 

The first set of data was a video record of the lesson that could be interrogated in detail. 
Basically the video record captured six distinct phases: the posing of the Learning task; 
students working on that task; students reporting on their explorations; posing of a 
Consolidating task; students working on that task; and students sharing solutions and 
strategies for the Consolidating task along with teacher comments. In both phases in which 
students reported on their explorations there was at least one student who “identified and 
used patterns”, another who “systematically exhausted possibilities” and at least one who 
attempted a generalisation indicating that such reasoning is possible. The students worked 
conscientiously throughout the 65 minute lesson, those who were asked to explain their 
approaches did so willingly and clearly, and students listened attentively to the explanation 
of others. 

A second set of data is the written reactions of the teacher after the lesson. In reflecting 
on the lesson, and responding to the prompt “In what ways did the structuring of the lesson 
in that way give students opportunities to explain their reasoning?” the teacher wrote: 

Breaking down the lesson into a three part cycle, the Launch, Explore and Summary, is essential in 
providing students with opportunities to explain the reasoning. I refer to it as a cycle as it can occur 
once, or several times throughout the lesson, when a Consolidating task takes place, or whether you 
are simply ‘checking-in’ during the Explore phase.  

During each phase of the cycle the teacher is required to take purposeful actions in order to set up a 
reflective and meaningful discussion, which supports students to explain their reasoning in a safe 
and supportive environment (students need to know that they are accountable, that they will be 
expected to share and listen to others, but that you’re not setting them up for failure or 
embarrassment either.)   

One big aspect of setting up a reflective summary phase, involves changing teachers’ perceptions on 
what a ‘share-time’ discussion in maths looks like. It is not simply ‘show and tell.’ We are now 
moving from a ‘show and tell’ to not only having students explaining their reasoning, but having 
students listen, re-explain, build on, learn from and challenge other students’ thinking. However, in 
order to achieve this, teachers must monitor students carefully during each phase of the lesson.  

Two major parameters are concerned in supporting students to explain their reasoning. One is the 
‘pure mathematical’ aspect, the second, the social aspect. What I mean by each, is that we want 
students to be able to articulate their thinking by connecting ideas and concepts and using correct 
mathematical terms and language, however, in order for this to occur, students must have developed 
an appreciation that they can in fact learn from their peers (not only their teacher.) In this way, we 
are able to develop a genuine community of learners.  
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These comments highlight the critical role of giving students time to engage with the 
task, establishing a classroom culture that allows reasoning to emerge, and specific 
pedagogies that facilitate the students’ engagement with reasoning. 

A third set of data is a summary of an analysis of the student learning. An important 
source of insights into the learning is their responses recorded on their worksheets. As with 
the video analysis, each of the hypothesised forms of reasoning was observed on the 
worksheets in this case many times. However, it is not meaningful to summarise student 
worksheet responses since the students can add to their worksheet while listening to the 
response of others and so such analysis would not quantify the extent of student reasoning. 

One source of useful data was from an item on the pre- and post-test that was posed to 
all students in the project. The question, termed here Item One, was posed as follows: 

I did this multiplication correctly but my printer ran out of ink and one of the digits did not get 
printed. 

22_ × 5 = 1140 

What might be the missing digit? (Student chose from options 2; 4; 6; and 8) 

The results for all students in the project and this focus class in particular on both the 
pre- and post-test are presented in Table 1. 

Table 1 
Number of Students Correct (and Percentage) for the Overall Project and the Focus Class 

on Item One  

Pre test whole group Post test whole group Pre test focus class Post test focus class 
n = 1226 n = 847 n = 22 n = 25 

550 (45%) 468 (55%) 14 (64%) 18 (72%) 

While more students in the focus class proportionally were correct than the overall 
group, the improvement in both groups is similar indicating that some students learned 
from the experience. Given the observation of extensive positive learning in the classroom, 
it is possible that the form of the test (on-line) or the timing resulted in it not being an 
accurate measure of knowledge.  

As a delayed-post-measure, the item was posed again to the focus class on a paper 
version in test conditions. An additional prompt – “prove your answer” was added to the 
statement for Item One. Note that this item has only one correct answer. Also on the 
delayed test, an additional item, termed Item Two, was posed as follows: 

I did this multiplication correctly but my printer ran out of ink and one of the digits did not get 
printed. 

2_ × _ = _ 6 

What might be the missing digits? Give as many answers as you can and explain what you did.  

Note that this has a range of possible correct answers. 
Three aspects of the responses of each student were coded. Table 2 presents the number 

of students correct from the focus class on this delayed post test. Noting that only a little 
over half of the 800 or so students in the overall project answered Item One correctly, that 
28 out of 29 students were correct is a strong indication that the students in the class knew 
how the answer the question. Further, that 19 out of 26 (73%) gave all six possible answers 
to Item Two indicates that the mathematical point of the various possibilities has been 
accepted by the class.  
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Table 2 
Responses of Students in the Focus Class to Delayed-Post-Test Items 

 Item One Item Two 
No correct answers 1 0 
1 correct answer 28 0 
2 or more correct answers n.a. 7 
A complete set of answers n.a. 19 

The responses were also inspected and coded on the extent to which the students 
sought to communicate more than the answers. Table 3 presents the coding of their 
responses to both items. 

Table 3 
Coding of Clarity of Explanations to Delayed-Post-Test Items 

 Item One Item Two 
Answers only with no attempt to explain 4 6 
Answers with an attempt to explain but not clear 7 8 
Correct answers and clear explanations given 17 13 

Three quarters of students made some attempt to communicate their thinking, with 
close to half of the responses of students to Item Two being rated as clear. This is evidence 
that most of the students were willing to attempt to explain their thinking, a key elements 
of reasoning. 

The responses of the students to Item Two were also coded on the type of reasoning 
that was evident in their response. The codes are presented in Table 4, noting that some 
responses were coded under more than one category.  

Table 4 
Types of Reasoning Displayed   

 Item Two 
Identifying and describing patterns 6 
Exhausting possibilities (known facts) 24 
Making a generalisation 0 
No explanation 6 

It is interesting that all of the explanations given were able to be coded in one of the 
three categories that we had anticipated. That none of the students sought a generalisation 
is no doubt a weakness in the item, in that there is a limited number of answers. It is also 
possible that seeing a generalisable solution takes more time than is available in a test 
context. Nevertheless we argue that systematically exhausting possibilities is a first step 
toward identifying and proving a generalisation suggesting that these students are engaging 
in reasoning. 

Summary and Conclusion 
Recognising the limitations in presenting data from just one lesson, the information 

presented illustrates that given an appropriate task that allows sustained engagement with 
the mathematical concept, a supportive classroom culture, and a teacher who structures 
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lessons to prioritise student thinking, it seems that reasoning (in terms of the way it is 
defined here) is possible. 

In terms of the research questions, the students did respond to the content items in ways 
that suggest they learnt the mathematics. It also seems that the process for learning the 
mathematics was connected to the opportunities for reasoning created by engaging with the 
task and either explaining to listening to student reasoning. 

In terms of the assumptions, the suggestion that students can and should reason for 
themselves is affirmed. Likewise, the importance of giving students tasks which are in 
some ways complex and for which the responses take time is emphasised by these results. 
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